
D0 farm status

Heidi Schellman
June 12, 00

D0 Farm needs

• 250K event size
• 50Hz trigger rate

– peak rate of 12.5 MB/sec
– DC is less but reprocessing will bring back up

• Reconstruction 5- 10 seconds/event
on 500 MHz PIII

– need 250-500 CPU’s to handle peak rate
– DC is 40% of peak
– time constant for 1 GB file is 5- 10 hours.

I/O machine

• Purpose
– split/merge of farm

output
– Serve home areas
– Batch system control
– File delivery master

• D0bbin
– 4 CPU SGI 02000
– 2 GB ethernet cards
– 4 72 GB disk

partitions (2 way
stripe)

– peak I/O rates of 40-
60 MB/sec

Worker Nodes

• Dual Pentium III
500MHz

• 256MB/CPU
• 2 data disks (18 GB) +

6GB system
• Fast ethernet
• CD/floppy for system

configuration

Plan to buy 50 new nodes this year
600 MHz 512 MB/CPU
Similar disk
Fast Ethernet
CD/floppy

Design Principles

• Use existing facilities
– SAM/Enstore for data access and file tracking
– Farm batch system (FBS) for most job control

• Keep D0 farm control scripts to a minimum
– Batch system assigns machines
– Data access system decides which file you get

• If worker process or machine dies, lose
minimal number of files and don’t affect other
processes

• No heroic recovery measures, track and
resubmit those files

Worker Configuration

• Workers act as generic FNAL farm machines
– Only customization is pnfs for file delivery and

home area mount
– D0 environment downloads at job start
– data access through SAM/encp/rcp, database

server

• Batch system assigns workers to job, not
D0FARM control process.

• D0FARM control never knows which workers
are assigned to a job and does not need to.

• SAM processes currently run as part of worker
batch job
– Run them as local daemons with autorestart?
– Run them as independent batch queues

• This gives control over stop/start

Data Access is SAM/enstore

• Integrated data
handling system

• File and process data
base

• Data base server
• File servers
• Enstore File delivery

systems
• Pnfs file system

Farm Perspective
Can tell it you want a set

of files

Can ask for the ‘next’
file

Can flag file as
processed or error

Can get detailed
accounting on what
happened

Farm accounts

• d0flib – library account has own ups/upd in
/d0farm/fnal/ups – use this to install code

• d0fdev – special account for checks
• d0farm – account to run jobs from

– Currently run jobs from
prd3/farm_machinery/samtest.

• sam – sam account

• These are mounted on all machines, IO and
workers

• I/O has 4 locally mounted stripe sets
– /d0/stripeN …

• Each worker has local disks
– /local/stage1/fbs_scratch 11 G for scratch
– /local/stage2 ?? Unused
– /local/d0 4G for constants downloads

Job submission

• Create project
– Short csh script
– Parameters are filename wildcard and reco

version
– Checks to see how many files of given

description have been processed by reco
version requested

– Creates a project definition which is files with
name x, tier digitized and no children processed
through d0reco with version XXXX

• Create JDF file from template
– Put in job parameters
– Will change to python interface with FBS 3.0

• Submit job to farm and place info in log

Farm Batch System
Typical Farm Job

SECTION START
EXEC=startjob
parameters

QUEUE=D0bbin
SECTION WORKER

EXEC=runjob
parameters

NWORKERS=20
QUEUE=D0worker

SECTION END
EXEC=stopjob
parameters

QUEUE=D0bbin
DEPEND

WORKER(done)

• Queue tells the system
what kind of machine
to run on and how
many.

• EXEC gives the script
name and parameters

• DEPEND allows
cleanup section to run
when all worker
sections are done.

• FBS assigns
temporary disk on
workers

• On end yanks disk and
kills all processes.

Currently generated by shell script. Python API is
now part of FBS 3.0 which is coming soon.

SECTION START_SAM

EXEC=/home/d0farm/prd3/farm_machinery/samtest/start_sam_v6.csh
preco03.07.00 protofarm prd3_single_preco03.07.00 new
/home/d0farm/prd3/farm_machinery/samtest
/home/d0farm/prd3/farm_machinery/samtest/Jun09 prd disk /d0/stripe2/samtest 50

QUEUE=io_d0sgi

NUMPROC=1

MAILTO=schellma@d0mino.fnal.gov

STDERR=/home/d0farm/prd3/farm_machinery/samtest/Jun09/prd3_single_preco03.07.00
%j%n.err
STDOUT=/home/d0farm/prd3/farm_machinery/samtest/Jun09/prd3_single_preco03.07.00
%j%n.out

NEED=1

SECTION WORKER_JOB

EXEC=/home/d0farm/prd3/farm_machinery/samtest/d0reco_v6.sh preco03.07.00
protofarm prd3_single_preco03.07.00 /home/d0farm/prd3/farm_machinery/samtest
/home/d0farm/prd3/farm_machinery/samtest/Jun09 prd disk
d0farm@d0bbin:/d0/stripe2/samtest

QUEUE=Worker_D0

NUMPROC=11

MAILTO=schellma@d0mino.fnal.gov

STDERR=/home/d0farm/prd3/farm_machinery/samtest/Jun09/prd3_single_preco03.07.00
%j%n.err
STDOUT=/home/d0farm/prd3/farm_machinery/samtest/Jun09/prd3_single_preco03.07.00
%j%n.out

NEED=1

DEPEND=started(START_SAM)

SECTION END

EXEC=/home/d0farm/prd3/farm_machinery/samtest/stop_sam_v6b.csh
preco03.07.00 protofarm prd3_single_preco03.07.00
/home/d0farm/prd3/farm_machinery/samtest
/home/d0farm/prd3/farm_machinery/samtest/Jun09 prd disk /d0/stripe2/samtest

QUEUE=io_d0sgi

NUMPROC=1

MAILTO=schellma@d0mino.fnal.gov

STDERR=/home/d0farm/prd3/farm_machinery/samtest/Jun09/prd3_single_preco03.07.00
%j%n.err

STDOUT=/home/d0farm/prd3/farm_machinery/samtest/Jun09/prd3_single_preco03.07.00
%j%n.out

NEED=1

DEPEND=ended(WORKER_JOB)

Job parameters

• Input as parameters when jdf created
– Reco_vers
– Project definition name
– Sam station name
– Command directory
– Lsf output directory (must be cross mounted)
– IO machine spool disk
– IO machine log directory
– Sam db version
– Optional tag for interactive jobs

• Generated by batch system
– LSF job id
– Worker node
– Batch process number
– Local scratch area

• Passed between sections
– Consumer ID file

• Derived
– Analysis project name (from lsf)
– Subsidiary disk areas

Start Section

• Set up products and output directories on
d0bbin

• Start the sam project
• Start a sam consumer
• Store consumer ID in special file tagged by lsf

jobid on shared disk.
• Create output directories on I/O machine
• Go into wait state until get end signal (currently

deletion of the CID file.

• Parameters:

Worker Section

• Generate analysis name from job id
• Get CID number from CID disk file tagged by

jobid
• Wait N* jobnumber seconds
• Check that project is in fact running
• Download D0 environment
• Start SAM stager (should be made

independent)
• Ask for next file
• Process file
• Generate metadata for output file
• Store output file and metadata on output buffer
• Store output logs on output buffer
• Inform SAM of success
• Ask for next file
• On error or end of list, terminate.

End Section

• Create job summary
• Stop the sam project
• Send message to Start process telling it to shut

down
– Done by moving the CID file

• (Optional) Start file merge/store of output files.
• Copy log files on to I/O node spool disks from

shared directories

Storing files

• Currently do as independent step on I/O node
– storeallfiles.py <fullpath> stores all files with

metadata in a given directory back into sam
– It has lots of loopbacks

• This mimics what will be done for merging on
I/O node

• Not very robust at all.

Diagnostics

• Farm batch system
– Farms hosts tells what is running where
– Farms status line mode list of processes
– Farms monitor – gui

• Sam system
– SQL queries
– SAM Data Browsers

• Datafiles
• Project definitions
• Analysis projects
• Running projects

• Check_project scripts
– Issues command line SQL with parentage

information

50% of dual CPU

100% of dual

Farm Batch System Monitor

Jobs use 100% of CPU

Query to see which
input files were
processed by a job

Query to see which
input files were
processed by a job

Check to
see if
output files
were stored
properly

Check to
see if
output files
were stored
properly

Results of typical farm test

• Create 4 jobs with 25-180 files in each (350
total)

• Submit 4 jobs to the farms using 10-30 workers
each (occupy 95/100)

• Process those files through official
reconstruction executable

• Files are 200-700 MB Monte Carlo, take 2-10
hours to process.

• 14 tapes read by 5 tape drives (3MB/sec
max/drive)

• Output written to I/O node for later dump to
tape

• This is almost* equivalent to starting a
production 100 processor farm from a cold
start.
*exception is tape drive speed -> 12MB/sec, did

not do output to tape

Data transfer to workers

d ata t r an s fe r r e d

0

10

20

30

40

50

60

70

80

90

9 :0 0 :0 0 9 :3 6 :0 0 10 :12 :00 10 :48 :00 11 :24 :00 12 :00 :00

t im e

Gb
yt

es Se r i e s 1

322 files
95 worker CPU
5 tape drives
14 different tapes

Fire up 4 jobs
Zee, zmumu, ttbar
Qcdpt>80

Average transfer rate
9.5 MB/sec
Peak ~ 15 MB/sec

All files on
workers

Things to do

• Cleanup
– Better python interface to sam
– User python API for FBS when it arrives
– Split stagers out of worker jobs
– Rewrite scripts to use components

• Job control and submission
– Create ‘Job’ object rather than command line
– Make ‘Job’ a subset of project instead of other

way around? Use SAM resubmit capability
– Automate job submission

• Split/Merge
– Get sam metadata for split merge
– Get copyevpack going to merge
– Get merge algorithm to choose files
– Improve file storage

• Diagnostics/Control
– Show all running projects
– Show all running jobs
– Ability to kill individual d0reco processes

How D0reco is currently built

• Log onto d0lxbld4
• Go to scratch area
• setenv PATH

/d0dist/dist/release/t00.92.00/d0reco/scripts:$PATH
• buildfarmreco test

• Makes file t00.92.00-test.tar

• ftp to the ~d0farm/d0reco area on one of the worker
nodes

• ~d0farm/untarme t00.92.00-test.tar

• mv t00.92.00-test t00.92.00
• tarreco t00.92.00

– This makes a t00.92.00.tar in the t00.92.00 directory
– Farm asks for ~/d0reco/t00.92.00/t00.92.00.tar right

now.

• (some of these steps could be streamlined,this was
designed so you could test before running)

How a job is submitted

• makeandrun <filename fragment> <diskid>

• from the ~/prd3/farm_machinery/samtest area

• Makeandrun has preco03.07.00 hardwired for
now.

• Creates project
• Creates JDF file
• Submits job

• check_project <filename fragment> <recoversion>

